Questions

Please use a single file for all questions. Give reasons to your answers or provide a counterexample. Please provide the following data in the pdf file

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each question is worth 4 marks.

Question 1.

Let $q: M(2 \times 2 ; \mathbb{R}) \rightarrow \mathbb{R}$ be a function given by the following formula

$$
q(A)=\operatorname{det} A
$$

where $A \in M(2 \times 2 ; \mathbb{R})$.
i) explain why q is a quadratic form on the space $M(2 \times 2 ; \mathbb{R})$,
ii) find the matrix M of the form q relative to the basis

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad E_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad E_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

(that is, matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is identified with the vector $\left.(a, b, c, d) \in \mathbb{R}^{4}\right)$,
iii) is the form q positive definite?

Solution 1. i)

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

The function is homogeneous of degree 2 .
ii)

$$
M=\left[\begin{array}{rrrr}
0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0
\end{array}\right]
$$

iii) no, it is not,

$$
\operatorname{det}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=-1<0
$$

Question 2.

Let $P \in M(n \times n ; \mathbb{R})$ be a matrix of an orthogonal projection. Is

$$
Q=I-P
$$

a matrix of some orthogonal projection? Note that

$$
I=I_{n}=\left[\begin{array}{lll}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right]
$$

it the $n \times n$ unit matrix.

Solution 2.

Yes, if P is the matrix of orthogonal projection onto subspace $V \subset \mathbb{R}^{n}$, then $P-I$ is the matrix of orthogonal projection onto V^{\perp}.

Question 3.

Do there exist two subspaces $V, W \subset \mathbb{R}^{3}$ such that $\operatorname{dim} V=\operatorname{dim} W=2$ and

$$
V \cap W=\{\mathbf{0}\}
$$

(i.e. the common part is the zero vector)? Give an example or explain why it is not possible.

Solution 3.

No, they do not. Any subspace of dimension 2 in \mathbb{R}^{n} is given by a single, nonzero linear equations. Matrix of a system of two non-zero linear equations has rank either 1 or 2 . Therefore, the dimension of the set of solutions is either $3-1=2$ or $3-2=1$.

Question 4.

Let $A \in M(8 \times 8 ; \mathbb{R})$ be a block matrix, with each block $B_{i j}$ of size 2×2, i.e.

$$
A=\left[\begin{array}{c|c|c|c}
B_{11} & B_{12} & B_{13} & B_{14} \\
\hline \mathbf{0} & B_{22} & B_{23} & B_{24} \\
\hline \mathbf{0} & \mathbf{0} & B_{33} & B_{34} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & B_{44}
\end{array}\right],
$$

where

$$
B_{11}=\left[\begin{array}{ll}
2022 & 2021 \\
2021 & 2022
\end{array}\right]
$$

Is $\lambda=1$ an eigenvalue of matrix A ?

Solution 4.

Yes, it is.

$$
\operatorname{det}\left(B_{11}-I\right)=\operatorname{det}\left[\begin{array}{ll}
2021 & 2021 \\
2021 & 2021
\end{array}\right]=0
$$

and the determinant of the upper diagonal block matrix is the product of the matrices on the diagonal, i.e.

$$
w_{A}(1)=\operatorname{det}(A-I)=0
$$

Question 5.

For any $\alpha, \beta \in \mathbb{R}$ let $F(\alpha, \beta) \in M(3 \times 3 ; \mathbb{R})$ be a matrix such that

$$
F(\alpha, \beta)=\left[\begin{array}{ccc}
1 & \alpha & \beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Does it follow that for any $\alpha, \beta \in \mathbb{R}$

$$
(F(\alpha, \beta))^{-1}=\left[\begin{array}{rrr}
1 & -\alpha & -\beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ?
$$

Solution 5.

Yes, it does. It can be check by direct computation that (it is enough to check the first product only)

$$
\left[\begin{array}{lll}
1 & \alpha & \beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -\alpha & -\beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & -\alpha & -\beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & \alpha & \beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

